在这里记录一下deepseek多轮对话模型的初级接入代码片段,支持一问一答,采用流式输出模式。效果如下:
使用VUE编写的代码片段记录如下:
<template>
<div class="chat-container">
<div class="input-area">
<input
v-model="inputContent"
type="text"
placeholder="输入您的问题..."
/>
<button @click="callDeepSeekApi">发送</button>
</div>
<div class="chat-output" v-html="formattedContent"></div>
</div>
</template>
<script>
import MarkdownIt from "markdown-it"; // 引入 MarkdownIt 库
export default {
data() {
return {
inputContent: "", // 存储用户输入的问题
outputContent: "", // 存储提取的 content 字段值
md: new MarkdownIt(),//初始化markdown-it
};
},
computed: {
// 将 Markdown 转换为 HTML
formattedContent() {
return this.md.render(this.outputContent);//使用markdown-it解析
},
},
methods: {
async callDeepSeekApi() {
this.outputContent = "";
const apiUrl = "https://api.deepseek.com/chat/completions";
const apiKey = process.env.VUE_APP_DEEPSEEK_API_KEY
const requestBody = {
model: "deepseek-chat",
messages: [
{ role: "system", content: this.inputContent },
{ role: "user", content: "Hello!" },
],
stream: true, // 启用流式输出
};
try {
const response = await fetch(apiUrl, {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${apiKey}`,
},
body: JSON.stringify(requestBody),
});
if (!response.ok) {
throw new Error(`请求失败: ${response.status} ${response.statusText}`);
}
// 读取流式响应
const reader = response.body.getReader();
while (true) {
const { done, value } = await reader.read();
if (done) break;
// 将流式数据块转换为字符串
const chunk = new TextDecoder().decode(value);
// 处理每行数据
chunk
.split("\n") // 按换行符分割
.filter((line) => line.trim() !== "") // 过滤空行
.forEach((line) => {
// 提取 data: 后的 JSON 数据
if (line.startsWith("data:")) {
const jsonStr = line.slice(5).trim(); // 去掉 "data:" 前缀
try {
// 检查是否为结束标志 [DONE]
if (jsonStr === "[DONE]") {
this.isStreaming = false; // 停止流式输出
return;
}
const jsonData = JSON.parse(jsonStr); // 解析 JSON
// 提取 content 字段
if (jsonData.choices && jsonData.choices[0].delta.content){
this.outputContent += jsonData.choices[0].delta.content; // 更新输出内容
}
} catch (error) {
console.error("JSON 解析失败:", error);
}
}
});
}
} catch (error) {
console.error("请求出错:", error);
}
},
},
};
</script>
<style>
/* 样式部分保持不变 */
.chat-container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
font-family: Arial, sans-serif;
}
.input-area {
margin-bottom: 20px;
display: flex;
gap: 10px;
}
.input-area input {
flex: 1;
padding: 10px;
border: 1px solid #ccc;
border-radius: 4px;
font-size: 16px;
}
.input-area button {
padding: 10px 20px;
background-color: #007bff;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.input-area button:hover {
background-color: #0056b3;
}
.chat-output {
border: 1px solid #ccc;
padding: 15px;
border-radius: 8px;
min-height: 400px;
overflow-y: auto;
background-color: #f9f9f9;
margin-bottom: 20px;
}
.chat-output p {
margin: 5px 0;
line-height: 1.6;
}
.loading-indicator {
text-align: center;
color: #666;
padding: 10px;
}
</style>